An H∞ Strategy for Strain Estimation in Ultrasound Elastography Using Biomechanical Modeling Constraint

نویسندگان

  • Zhenghui Hu
  • Heye Zhang
  • Jinwei Yuan
  • Minhua Lu
  • Siping Chen
  • Huafeng Liu
چکیده

The purpose of ultrasound elastography is to identify lesions by reconstructing the hardness characteristics of tissue reconstructed from ultrasound data. Conventional quasi-static ultrasound elastography is easily applied to obtain axial strain components along the compression direction, with the results inverted to represent the distribution of tissue hardness under the assumption of constant internal stresses. However, previous works of quasi-static ultrasound elastography have found it difficult to obtain the lateral and shear strain components, due to the poor lateral resolution of conventional ultrasound probes. The physical nature of the strain field is a continuous vector field, which should be fully described by the axial, lateral, and shear strain components, and the clinical value of lateral and shear strain components of deformed tissue is gradually being recognized by both engineers and clinicians. Therefore, a biomechanical-model-constrained filtering framework is proposed here for recovering a full displacement field at a high spatial resolution from the noisy ultrasound data. In our implementation, after the biomechanical model constraint is integrated into the state-space equation, both the axial and lateral displacement components can be recovered at a high spatial resolution from the noisy displacement measurements using a robust H∞ filter, which only requires knowledge of the worst-case noise levels in the measurements. All of the strain components can then be calculated by applying a gradient operator to the recovered displacement field. Numerical experiments on synthetic data demonstrated the robustness and effectiveness of our approach, and experiments on phantom data and in-vivo clinical data also produced satisfying results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A stochastic filtering approach to recover strain images from quasi-static ultrasound elastography

BACKGROUND Model-based reconstruction algorithms have shown potentials over conventional strain-based methods in quasi-static elastographic image by using realistic finite element (FE) or bio-mechanical model constraints. However, it is still difficult to properly handle the discrepancies between the model constraint and ultrasound data, and the measurement noise. METHODS In this paper, we ex...

متن کامل

Reconstruction of elasticity: a stochastic model-based approach in ultrasound elastography

BACKGROUND The convectional strain-based algorithm has been widely utilized in clinical practice. It can only provide the information of relative information of tissue stiffness. However, the exact information of tissue stiffness should be valuable for clinical diagnosis and treatment. METHODS In this study we propose a reconstruction strategy to recover the mechanical properties of the tissu...

متن کامل

Patient-specific Deformation Modelling via Elastography: Application to Image-guided Prostate Interventions

Image-guided prostate interventions often require the registration of preoperative magnetic resonance (MR) images to real-time transrectal ultrasound (TRUS) images to provide high-quality guidance. One of the main challenges for registering MR images to TRUS images is how to estimate the TRUS-probe-induced prostate deformation that occurs during TRUS imaging. The combined statistical and biomec...

متن کامل

Power spectral strain estimators in elastography.

Elastography can produce quality strain images in vitro and in vivo. Standard elastography uses a coherent cross-correlation technique to estimate tissue displacement and tissue strain using a subsequent gradient operator. Although coherent estimation methods generally have the advantage of being highly accurate and precise, even relatively small undesired motions are likely to cause enough sig...

متن کامل

Theoretical derivation of SNR, CNR and spatial resolution for a local adaptive strain estimator for elastography.

Conventional techniques in elastography estimate the axial strain as the gradient of the displacement (time-delay) estimates obtained using cross-correlation of pre- and temporally stretched postcompression radiofrequency (RF) A-line segments. The use of a constant stretch factor for stretching the postcompression A-line is not adequate in the presence of heterogeneous targets that are commonly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013